Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation

نویسندگان

  • M. Reuter
  • F. Saueressig
چکیده

The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative β-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in d = 4. The resulting renormalization group trajectories are classified and their physical relevance is discussed. The non-trivial fixed point which, if present in the exact theory, might render Quantum Einstein Gravity nonperturbatively renormalizable is investigated for various spacetime dimensionalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of nonlocal truncations in Quantum Einstein Gravity and its renormalization group behavior

Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function Fk(V ) of the Euclidean space-time volume V. A p...

متن کامل

On the renormalization group flow of f(R)-gravity

We use the functional renormalization group equation for quantum gravity to construct a nonperturbative flow equation for modified gravity theories of the form S = ∫ ddx √ gf(R). Based on this equation we show that certain gravitational interactions monomials can be consistently decoupled from the renormalization group (RG) flow and reproduce recent results on the asymptotic safety conjecture. ...

متن کامل

Fixed points of quantum gravity.

Euclidean quantum gravity is studied with renormalization group methods. Analytical results for a nontrivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameters in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

متن کامل

Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity

Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bar...

متن کامل

Nonlocal Quantum Gravity and the Size of the Universe ∗

Motivated by the conjecture that the cosmological constant problem is solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function Fk(V ) of the Euclidean spacetime volume V . For the V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008